对于袋式除尘设备来说,使用温度与除尘效率关系并不明显,这一点不同于电除尘,对粉尘处理电除尘器来说,温度的变化会影响到粉尘的比电阻等影响粉尘处理除尘效率。处理含尘浓度高的气体,可以安装或重力除尘器作为预除尘,但是,这要增加系统的阻力,动力消耗增加。所以当粉尘或物料成品无需分级的情况下,大多直接使用袋式除尘器,并非所有的袋式除尘器都能处理高含尘浓度的气体。只有滤袋间距较宽、袋外面过滤形式装有连续清灰装置的袋式除尘器,才适于处理高含尘浓度的气体。处理高含尘量时,在袋式除尘器的构造上应尽量使粉尘直接落入灰斗或加些挡板,以减少附着于滤袋上的粉尘量;防止滤布的摩擦损坏,不应使高速运动的粉尘直接冲击滤布。
效率高,且具有纤维、毡、布和纸等各种纤细的表态,孔隙直接开口在纤维表面,其吸附质到达吸附位的扩散路径短,且本身的外表面积较内表面积高出两个数量级。对于有些大分子或颗粒物质,如二恶英、粉尘等,体积已经接近乃至大于活性碳纤维微孔体积,难以被吸附,相比较活性炭更占有优势。结构说明:微孔形结构:微孔半径在2nm以下,其孔径分布窄,特殊的细孔呈单分散分布,由不同尺寸的微细孔隙组成其结构,并且中孔、小孔扩散呈现出多分散型分布,在各细孔结构中的差别较大,其主要原因在于原料的不同。
催化燃烧废气处理技术是 20 世纪 40 年代末出现的。从 1949 年美国研制出世界上第一套催化燃烧装置到现在,该技术已广泛地应用于油漆、橡胶、塑料、树脂、皮革、食品和铸造等领域,也用于汽车尾气净化等方面。中国在 1973 年开始将催化燃烧法用于治理漆包线烘干炉排出的有机废气,随后又在绝缘材料、印刷工业等方面进行了研究,使催化燃烧法得到了广泛的应用。经过多年来的发展与改良,催化燃烧装置具有其特有的优势:(1) 可处理绝大多数VOCs 废气;(2)可将有机化合物氧化分解成无毒无害的 CO2 气体与 H2O;(3)分解效率高达 95%以上,无需作后续处理;(4)可在低温(200~400 ℃)下对 VOCs 进行分解,燃料消耗量低(节能);(5)催化剂使用寿命长,可根据入口气体的风量与 VOCs含量推断催化剂的使用时间,且催化剂可进行再生利用;(6)设备内为负压结构(风机设置在设备内部下游),可有效防止臭气渗漏;(7)具有高度安全性,能在低温下进行反应,无粉尘爆炸的危险;(8)处理效率在 99%以上(彻底除臭)。催化燃烧装置的缺点:(1)对于较大风量且低VOCs 质量浓度废气而言,处理费用相对过高,可协同沸石滚轮浓缩设备进行废气浓缩后再作催化氧化处理;(2)用于处理 VOCs 的氧化用催化剂当遇见硫、磷、硅等物质时会发生催化剂中毒现象,因此需要设置预处理步骤。
表面化学结构:活性碳纤维固体表面原子呈不饱和结构,具有独特的表面化学性能,微晶在燃烧温度低时易与氧化介质发生反应生成氧化产物,主要有羧基、酚基、醌基等含氧基团,及含硫基、氮元素、卤素等官能团。其表面酸性与吸附平衡有密切的关系。吸附剂的细孔分为三类:孔径大于50nm的为大孔,2nm~50nm的为中孔,0.8nm~2nm的为微孔以及小于0.8nm的为亚微孔。活性炭纤维的孔主要是乱层结构炭和石墨微晶形成的微孔。微孔的大量存在使活性炭纤维的表面积增大,同时也使其吸附量提高。
1.掩蔽法原理:采用更强烈的芳香气味与臭气掺和,以掩蔽臭气,使之能被人接收。适用范围:适用于需立即地、暂时地消除低浓度恶臭气体影响的场合,恶臭强度2.5左右,无组织排放源。优点:可尽快消除恶臭影响,灵活性大,费用低。缺点:恶臭成分并没有被去除。2、低温等离子净化器稀释扩散法原理:将有臭味的气体通过烟囱排至大气或用无臭空气稀释,降低恶臭物质浓度以减少臭味。适用范围:适用于处理中、低浓度的有组织排放的恶臭气体。优点:费用低、设备简单。缺点:易受气象条件限制,恶臭物质依然存在。3、本地低温等离子净化器热力燃烧法与催化燃烧法原理:在高温下恶臭物质与燃料气充分混和,实现完全燃烧适用范围:适用于处理高浓度、小气量的可燃性气体。优点:净化效率高,恶臭物质被彻底氧化分解。缺点:设备易腐蚀,消耗燃料,处理成本高,易形成二次污染。