RTO是最近十几年国内兴起的一种有机废气处理技术。经过近几年的使用,RTO也暴露出了一些问题,其中比较突出的问题就是RTO的失火、爆炸等安全问题。结合真实发生的事故案例,据公开资料整理分享有关RTO工作原理、安全事故案例分析与RTO装置安全问题预防措施。绝大部分化工VOCs都是易燃易爆气体,不要盲目选择治理技术工艺,根据废气的成份,浓度,湿度,风量,含尘量等做合理选择,要客观认知每项技术的工作原理和安全预防措施,而且每一技术本身都不是万能的!RTO装置安全问题预防措施:(1) 充分了解客户的工艺,明确工艺过程中有机废气的排放特点及可能存在的突发因素。(2) 严格控制RTO进口有机物的浓度,使其控制在一个安全的水平,这是预防爆炸的一个最根本的措施。RTO本身就是一个点火源,如果进口浓度已经超过爆炸下限,即使前面用了防爆风机、管道采用了防静电都无济于事。由于有机物的爆炸下限随着气体温度的提高会大幅降低,同时由于化工企业有机废气的突发性排放,入口浓度必须远低于爆炸下限(一般低于爆炸下限的25%)。(3) 增设必要的仪器设备,废气入口及必要的废气支路入口处安装浓度监测仪;对于高浓度废气,RTO入口需加稀释风阀;废气入口加缓冲罐,缓冲罐的体积要设计得当;增加浓度监测仪、稀释风阀、RTO风机等仪器设备之间的连锁控制,对突发问题第一时间做出正确的动作;在RTO入口加阻火器,防止回火;在RTO燃烧室、缓冲罐、管道拐弯处加泄爆片;在RTO设备附近设置一些消防设施。(4) 优化收集系统。对吸风罩、风机选用进行规范设计,同时废气收集管线需统筹规划,形成支管→主管→处理装置→总排口的收集处理系统,确保废气收集效果。对于易燃易爆废气在设计收集系统和预处理系统时,不追求过高的强度反而有利于系统安全,不过即使选用强度不高的设备和材料。(5) 强化预处理措施。由于精细化工行业废气排放浓度有较大的波动,因此需对各类不同浓度的有机废气进行混匀、缓冲和预处理,建议企业采用PP 填料塔对有机废气进行预处理,由于PP 填料塔强度不高,在发生事故时极易泄爆,最大限度的保证系统安全。(6) 渐进化科学调试。RTO 炉调试时理应先进行空载调试,待空载调试稳定后再逐步接入低浓度有机废气,如企业污水池加盖收集后废气、车间换风废气等,最终再逐步接入高浓度废气。同时对拟接入高浓度废气的排放流量、排放浓度进行检测,重点关注峰时浓度,单一排气点有机浓度宜控制在1 000 ppm 以内,最高不得超过5 000 ppm。(7) 安装在线监控系统,设置电控系统操作间。RTO 炉净化处理系统是一项人机高度结合的设备,虽然其自动化程度较高,但必须安排专人进行维护与管理,如RTO 炉在发生爆炸前有机物浓度常会在短时间内迅速升高。此时系统若有人值守则可提前发出预警并采取必要的措施,避免事故的发生;同时对RTO各系统尾气安装TVOC 浓度在线监控系统,为企业管理提供必要的数据支撑。
常见的粉尘处理布袋除尘器损坏原因有腐蚀,配件使用时长短,除尘器配件损坏等,而较为常见的损坏就是布袋除尘器的腐蚀问题了。由于吸入的烟气中含有大量腐蚀性物质,而且除尘器内部温度过高,导致腐蚀性更严重。除尘器内部配件被腐蚀,长期下来的隐患就是导致除尘器运行故障,除尘效率降低。要降低除尘器的腐蚀原因,就要从除尘器本身改善做起。 防止腐蚀,直接有效的方法就是改进除尘工艺系统和操作方法,以免出现冷凝现状。但是具体而言要做到这一点还是很不容易的,且不说现在的工艺又有多先进,能做到基本防腐就已经很不错了。其次的还是从除尘器的外部找防腐方法吧!如果只是在一般情况下的话,除尘器只要在制造时能够做到除锈涂装保护作用,在短期之内也不会遭受到严重的腐蚀作用。
餐饮业的厨房油烟处理是非常关键的问题,选择好用的油烟能够极大减少厨房油污的堆积,同时会降低油烟排出对空气的污染。因为油烟净化器采用的是机械分离以及静电净化的原理,这样一些颗粒较大的油污粒子能够被分离出来,形成油滴自然下流。而另一部微小粒子则被高低压分离,然后被吸附碳化,降解有害成分。目前国内有许多的油烟净化器厂家都采用了国外先进的技术,目前它的产品具有哪些特点呢?接下来就让友健科技小编给大家做详细的介绍。首先,它是采取了静电净化以及机械净化的作用,这种特点让油烟净化器能够有效的吸附周围的油烟粉尘,而且净化的效率也得到了极大的提高.
催化燃烧废气处理技术是 20 世纪 40 年代末出现的。从 1949 年美国研制出世界上第一套催化燃烧装置到现在,打磨台该技术已广泛地应用于油漆、橡胶、塑料、树脂、皮革、食品和铸造等领域,也用于汽车尾气净化等方面。中国在 1973 年开始将催化燃烧法用于治理漆包线烘干炉排出的有机废气,随后又在绝缘材料、印刷工业等方面进行了研究,高密打磨台使催化燃烧法得到了广泛的应用。经过多年来的发展与改良,催化燃烧装置具有其特有的优势:(1) 可处理绝大多数VOCs 废气;(2)可将有机化合物氧化分解成无毒无害的 CO2 气体与 H2O;(3)分解效率高达 95%以上,无需作后续处理;(4)可在低温(200~400 ℃)下对 VOCs 进行分解,燃料消耗量低(节能);(5)催化剂使用寿命长,可根据入口气体的风量与 VOCs含量推断催化剂的使用时间,且催化剂可进行再生利用;(6)设备内为负压结构(风机设置在设备内部下游),可有效防止臭气渗漏;(7)具有高度安全性,能在低温下进行反应,无粉尘爆炸的危险;(8)处理效率在 99%以上(彻底除臭)。催化燃烧装置的缺点:(1)对于较大风量且低VOCs 质量浓度废气而言,处理费用相对过高,可协同沸石滚轮浓缩设备进行废气浓缩后再作催化氧化处理;(2)用于处理 VOCs 的氧化用催化剂当遇见硫、磷、硅等物质时会发生催化剂中毒现象,因此需要设置预处理步骤。
含碳纤维高温活化后,纤维表面布满微孔(即氢、氧原子挥发前所占位置),其孔径为一根头发丝的十万分之一,把这些微孔的内表面展开,1g活性碳纤维毡的展开面积高达1600㎡,这是这些微孔起到了吸附气味的作用。从物理学可知,物体的表面对外存在引力,表面越大吸附力越大,正是通过这种范德华力的作用吸附周边分子并牢固与微孔之中。活性炭纤维毡久用之后,微孔会被填满,致使吸附能力有所下降。使用某种办法可使吸附质的动能增加,摆脱引力,自活性碳纤维中逸出(不能完全解吸)。此时活性炭纤维的吸附功能即可复原,重复使用。活性炭纤维脱附再生的方法很多,如热蒸汽解吸法、氮气解吸法等,有机废气治理中常用热蒸汽解吸法。工业上的解吸需要专门装置,而一般民品只需晾晒或电热吹风即可。